Variation of $N_{m}F_{2}$ and $h_{m}F_{2}$ deduced from DPS-4 over Multan (Pakistan) and their comparisons with IRI-2007 & IRI-2012 during the deep solar minimum between 23rd and 24th solar cycles

Muhammad Ayyaz Ameen, Kazim Raza & Muhammad Ayub

Pakistan Space & Upper Atmosphere Research Commission (SUPARCO)
Space Weather Monitoring in Pakistan

<table>
<thead>
<tr>
<th>Area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>796,095 km</td>
</tr>
<tr>
<td></td>
<td>307,374 sq mi</td>
</tr>
<tr>
<td>Water (%)</td>
<td>3.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Population</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 estimate</td>
<td>186,693,907 (6th)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Zone</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 estimate</td>
<td>UTC+5</td>
</tr>
</tbody>
</table>

Wikipedia

17 October 2014
COSPAR 2014 Moscow, Russia
Pakistan - at GIRO
History of Multan Station

• An ionospheric station was established at Multan in the vicinity of Bahauddin Zakaria University in 1987 to cover the east-central part of the country. An old PIR-9 was shifted to Multan

• DPS-4 was installed at Multan in April 2008
From analogue to digital
Some initial ionograms
Foreword

Digisonde DPS-4 data of Multan (geog coord. 30.18°N, 71.48°E) is being reported for the first time. The variations in F$_2$-layer peak electron density N_mF_2 and its height h_mF_2 have been studied during the deep solar minimum between 23rd and 24th solar cycles along their comparisons with IRI-2007 & IRI-2012 predications.
Introduction

• The recent solar minimum was different
 – as it lasted for longer than the usual and
 – it was a deep solar minimum

• Period of study May 2008 – Apr 2009 (SSN<4)

• The two objectives of present study are
 – reporting the Multan DPS-4 data and
 – their comparison with two versions of IRI
Methodology

• $N_m F_2$ is calculated from the critical plasma frequency, $f_o F_2$, of the F_2-layer by

$$N_m F_2 \text{ (el-m}^{-3}) = 1.24 \times 10^{10} \times (f_o F_2/\text{MHz})^2$$

• $h_m F_2$ values are obtained from SAO-X which are based upon true height profile inversion algorithm.

• For the investigation of F_2-layer behaviours under deep solar minimum, the data under geomagnetic quiet-conditions from May 2008 to April 2009 are selected
IQD & IDD

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY 2008</td>
<td></td>
<td>17</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>09</td>
<td>12</td>
<td>26</td>
<td>27</td>
<td>11</td>
<td>13</td>
<td>05</td>
<td>03</td>
<td>21</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>JUNE 2008</td>
<td></td>
<td>13</td>
<td>10</td>
<td>05</td>
<td>22</td>
<td>11</td>
<td>12</td>
<td>04</td>
<td>09</td>
<td>21</td>
<td>23</td>
<td>15</td>
<td>26</td>
<td>14</td>
<td>16</td>
<td>07</td>
</tr>
<tr>
<td>JULY 2008</td>
<td></td>
<td>19</td>
<td>08</td>
<td>07</td>
<td>09</td>
<td>02</td>
<td>25</td>
<td>03</td>
<td>31</td>
<td>20</td>
<td>29</td>
<td>23</td>
<td>12</td>
<td>13</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>AUGUST 2008</td>
<td></td>
<td>25</td>
<td>02</td>
<td>26</td>
<td>24</td>
<td>30</td>
<td>05</td>
<td>29</td>
<td>28</td>
<td>04</td>
<td>22</td>
<td>09</td>
<td>18</td>
<td>10</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>SEPTEMBER</td>
<td>2008</td>
<td>13</td>
<td>12</td>
<td>29</td>
<td>21</td>
<td>24</td>
<td>11</td>
<td>23</td>
<td>02</td>
<td>28</td>
<td>26</td>
<td>04</td>
<td>15</td>
<td>08</td>
<td>07</td>
<td>16</td>
</tr>
<tr>
<td>OCTOBER 2008</td>
<td></td>
<td>09</td>
<td>18</td>
<td>25</td>
<td>24</td>
<td>27</td>
<td>17</td>
<td>07</td>
<td>08</td>
<td>10</td>
<td>14</td>
<td>11</td>
<td>29</td>
<td>03</td>
<td>02</td>
<td>30</td>
</tr>
<tr>
<td>NOVEMBER 2008</td>
<td></td>
<td>22</td>
<td>21</td>
<td>03</td>
<td>14</td>
<td>18</td>
<td>13</td>
<td>05</td>
<td>19</td>
<td>06</td>
<td>04</td>
<td>25</td>
<td>08</td>
<td>09</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>DECEMBER 2008</td>
<td></td>
<td>01</td>
<td>02</td>
<td>09</td>
<td>29</td>
<td>14</td>
<td>30</td>
<td>18</td>
<td>21</td>
<td>20</td>
<td>28</td>
<td>06</td>
<td>31</td>
<td>05</td>
<td>23</td>
<td>04</td>
</tr>
<tr>
<td>JANUARY 2009</td>
<td></td>
<td>12</td>
<td>22</td>
<td>23</td>
<td>11</td>
<td>24</td>
<td>28</td>
<td>07</td>
<td>18</td>
<td>25</td>
<td>17</td>
<td>03</td>
<td>26</td>
<td>19</td>
<td>01</td>
<td>31</td>
</tr>
<tr>
<td>FEBRUARY 2009</td>
<td></td>
<td>08</td>
<td>02</td>
<td>17</td>
<td>10</td>
<td>19</td>
<td>13</td>
<td>26</td>
<td>09</td>
<td>06</td>
<td>07</td>
<td>14</td>
<td>04</td>
<td>27</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>MARCH 2009</td>
<td></td>
<td>02</td>
<td>07</td>
<td>09</td>
<td>18</td>
<td>06</td>
<td>23</td>
<td>01</td>
<td>31</td>
<td>29</td>
<td>28</td>
<td>13</td>
<td>14</td>
<td>08</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>APRIL 2009</td>
<td></td>
<td>04</td>
<td>23</td>
<td>02</td>
<td>30</td>
<td>07</td>
<td>03</td>
<td>28</td>
<td>14</td>
<td>26</td>
<td>29</td>
<td>09</td>
<td>11</td>
<td>18</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>
Methodology

• The modelled values $h_m F_2$ and $N_m F_2$ are predicted by the IRI-2007 and IRI-2012.

• $h_m F_2$ is modelled through its close correlation with the propagation factor $M(3000)F_2$.

• Mapping options

<table>
<thead>
<tr>
<th>Parameters</th>
<th>IRI-2007</th>
<th>IRI-212</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_m F_2$</td>
<td>CCIR, URSI</td>
<td>CCIR, URSI</td>
</tr>
<tr>
<td>$h_m F_2$</td>
<td>CCIR</td>
<td>CCIR</td>
</tr>
</tbody>
</table>
Methodology

• It is noted that the IRI uses ionosphere-effective IG_{12} to predict N_{m}F_{2} (f_{o}F_{2}) and the sunspot number, R_{z12} for h_{m}F_{2}.

• Moreover, the observed A_{p} and F_{10.7} indices are used in the IRI modelling for month-to-month variability.

• Since the ionosphere can be disturbed even under quiet magnetic conditions, therefore monthly hourly observed and modelled data under geomagnetic quiet-conditions are applied in this study.
$N_m F_2$ over Multan for Equinox
\(N_m F_2 \) over Multan for Winter

![Graph of \(N_m F_2 \) over Multan for Winter with LT on the x-axis and \(N_m F_2 (m^{-3}) \times 10^{10} \) on the y-axis, showing data points for Nov.08, Dec.08, Jan.09, Feb.09, and the median.]

Source: SUPARCO
$N_{m}F_2$ over Multan for Summer
$h_m F_2$ over Multan for Equinox

Mar.09 Apr.09 Sept.08 Oct.08 Median

$h_m F_2$ (km)

LT

10 October 2014
COSPAR 2014 Moscow, Russia
$h_m F_2$ over Multan for Winter

May.08 Jun.08 Jul.08 Aug.08 Median

17 October 2014 COSPAR 2014 Moscow, Russia
h_mF_2 over Multan for Summer

Graph:
- Nov.08
- Dec.08
- Jan.09
- Feb.09
- Median

Axes:
- h_mF_2 (km) on the y-axis.
- LT (local time) on the x-axis.

Key Points:
- The graph shows the variation of h_mF_2 over Multan from November 2008 to February 2009.
- The median values are indicated by a blue line.

Context:
- Image from the COSPAR 2014 conference.
- Reconstruction from the extracted text.
N_mF_2 comparison with IRI-2007
$N_m F_2$ comparison with IRI-2012

17 October 2014

COSPAR 2014 Moscow, Russia
$h_m F_2$ comparison with IRI-2007
$h_m F_2$ comparison with IRI-2012
Results & Conclusion

• The observation results show that the $N_{m}F_2$ values are greater and smaller during daytime and nighttime, respectively.

• The $h_{m}F_2$ observations show sunrise peaks along with some prominent pre-sunrise peaks in some months.

• Seasonal variations show that the daytime $N_{m}F_2$ are greater in the equinox and summer months, while the daytime $h_{m}F_2$ are slightly greater in the equinox and winter months.

• Comparison of observations with IRI (next slide)
Results & Conclusion

– The observed $h_m F_2$ values are closer to IRI-2007 than to IRI-2012.
– The $N_m F_2$ of URSI map of IRI-2012 agrees well with the observations in equinox.
– The IRI-2007 agrees better with the $N_m F_2$ observations for winter and summer than IRI-2012, whereas IRI-2012 is closer to the observations for equinox months.

• Since Multan lies at the verge of low and mid-latitude and hence both $E\times B$ drifts and thermospheric winds are affecting the location
спасибо

17 October 2014
COSPAR 2014 Moscow, Russia